An analysis of time-aggregated and time-series features for scoring different aspects of multimodal presentation data
نویسندگان
چکیده
We present a technique for automated assessment of public speaking and presentation proficiency based on the analysis of concurrently recorded speech and motion capture data. With respect to Kinect motion capture data, we examine both timeaggregated as well as time-series based features. While the former is based on statistical functionals of body-part position and/or velocity computed over the entire series, the latter feature set, dubbed histograms of cooccurrences, captures how often different broad postural configurations co-occur within different time lags of each other over the evolution of the multimodal time series. We examine the relative utility of these features, along with curated features derived from the speech stream, in predicting human-rated scores of different aspects of public speaking and presentation proficiency. We further show that these features outperform the human inter-rater agreement baseline for a subset of the analyzed aspects.
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملCombination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملA Critical Visual Analysis of Gender Representation of ELT Materials from a Multimodal Perspective
This content analysis study, employing a multimodal perspective and critical visual analysis, set out to analyze gender representations in Top Notch series, one of the highly used ELT textbooks in Iran. For this purpose, six images were selected from these series and analyzed in terms of ‘representational’, ‘interactive’ and ‘compositional’ modes of meanings. The result indicated that there are...
متن کامل